History	Mathematical preliminaries	Security of RSA	Implementation of RSA
O	000	0000	000

Overview of the RSA cryptosystem

Joshua Pité and Yiying Zhong Mentor: Honglin Zhu

MIT PRIMES Conference

May 19, 2024

J. Pité and Y. Zhong

The RSA cryptosystem

MIT PRIMES Conference

イロト イポト イラト イラト

Mathematical preliminaries 000	Security of RSA 0000	Implementation of RSA 000

Outline

1 History

- 2 Mathematical preliminaries
- 3 Outline of the RSA algorithm
- 4 Security of RSA
- 5 Implementation of RSA

(4) (2) (4) (2) (4)

History	Mathematical preliminaries 000	Security of RSA 0000	Implementation of RSA 000
Histor	y		

・ロト・西ト・ヨト・ヨー シック

J. Pité and Y. Zhong

The RSA cryptosystem

History	Mathematical preliminaries 000	Security of RSA 0000	Implementation of RSA 000
Histor	Y		

• Early cryptography: private key. (Caesar cipher)

History	Mathematical preliminaries	Outline of the RSA algorithm	Security of RSA	Implementation of RSA
•	000	O	0000	000
History				

- Early cryptography: private key. (Caesar cipher)
- Modern cryptography: public key.

History	Mathematical preliminaries	Security of RSA	Implementation of RSA
●	000	0000	000

History

- Early cryptography: private key. (Caesar cipher)
- Modern cryptography: public key.
- The RSA cryptosystem, was named after Ron Rivest, Adi Shamir, and Leonard Adleman, who first publicly described it in 1977.

Mathematical preliminaries

Modular arithmetic

Euler totient and Euler's theorem

MIT PRIMES Conference

Modular arithmetic

Congruence modulo m

Integers a and b are congruent modulo m if m divides their difference a - b. We denote it as $a \equiv b \pmod{m}$

Greatest common divisor

The greatest common divisor of integers a and b, denoted gcd(a, b), is the largest integer that divides both a and b.

Multiplicative inverse

An integer b is the multiplicative inverse of a modulo m if:

 $ab \equiv 1 \pmod{m}$

This exists if and only if gcd(a, m) = 1.

Mathematical preliminaries ○●○	Security of RSA 0000	Implementation of RSA 000

Euler's totient function

Euler's totient function $\phi(n)$

Counts the number of integers up to n that are relatively prime to n

$$\phi(n) = \#\{m \in \mathbb{N} : 1 \le m < n \text{ and } gcd(m, n) = 1\}$$

Examples of $\phi(n)$ n $\phi(n)$

Properties of $\phi(n)$

- If p is a prime number: $\phi(p) = p 1$.
- If a and b are coprime: $\phi(ab) = \phi(a)\phi(b)$.

イロト 不得下 イヨト イヨト

Special cases used in RSA

Theorem (Euler)

If N and m are coprime, then

 $m^{\phi(N)} \equiv 1 \pmod{N},$

This theorem generalizes Fermat's little theorem, providing a fundamental reduction method for large powers in modular arithmetic.

Special cases used in RSA

• N = pq with p and q primes.

•
$$\phi(N) = \phi(pq) = \phi(p)\phi(q) = (p-1)(q-1).$$

• $m^{(p-1)(q-1)} \equiv 1 \pmod{N}$.

イロト 不得下 イヨト イヨト

Outline of the RSA algorithm

Alice	Eve	Bob
	Key Creation	
	N and e published.	Choose large primes p , q , and compute $N = p \cdot q$. Choose e , with gcd(e, (p - 1)(q - 1)) = 1.
	Encryption	
Create plaintext <i>m</i> . Use known key (N, e) to compute $c \equiv m^e \pmod{N}$. Send ciphertext <i>c</i> to Bob.	Insecure ciphertext <i>c</i> .	
	Decryption	
		Compute d satisfying $ed \equiv 1 \pmod{(p-1)(q-1)}$. Compute $c^d \pmod{N}$: $c^d \equiv m^{de}$ $\equiv m^{k(p-1)(q-1)+1}$ $\equiv m \pmod{N}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

J. Pité and Y. Zhong

	Mathematical preliminaries 000	Security of RSA 0000	Implementation of RSA 000

- Security foundation
- Common uses of RSA
- Considerations for quantum computing

イロト イポト イラト イラト

Basic security foundation of RSA

・ロト・日本・日本・日本・日本・日本

J. Pité and Y. Zhong

The RSA cryptosystem

MIT PRIMES Conference

Basic security foundation of RSA

Problem 1: integer factorization

Given an integer N promised to be a product of two large primes p and q, find p and q.

Basic security foundation of RSA

Problem 1: integer factorization

Given an integer N promised to be a product of two large primes p and q, find p and q.

- No known efficient (polynomial time) algorithm with classical computers.
- Hard to obtain the decryption exponent *d* from published public key *N* alone.

Basic security foundation of RSA

Problem 1: integer factorization

Given an integer N promised to be a product of two large primes p and q, find p and q.

- No known efficient (polynomial time) algorithm with classical computers.
- Hard to obtain the decryption exponent *d* from published public key *N* alone.

Problem 2: RSA

Given e, c and N, also with this equation known, find the value of x.

 $x^e \equiv c \pmod{N},$

The security of the RSA relied on the assumption that it is hard to compute the *e* th roots modulo *N*.

J. Pité and Y. Zhong

Basic security foundation of RSA

Theorem

If the Problem 1 (integer factorization) is solved, Problem 2 (RSA) can also be solved.

・ロト・日本・日本・日本・ショー もくの

J. Pité and Y. Zhong

The RSA cryptosystem

MIT PRIMES Conference

Basic security foundation of RSA

Theorem

If the Problem 1 (integer factorization) is solved, Problem 2 (RSA) can also be solved.

- It is suspected, but not proved, that Problem 2 may be easier than Problem 1. (Boneh and Venkatesan)
- Thus, breaking RSA may be easier than solving integer factorization.

History O	Mathematical preliminaries		Security of RSA 00●0	Implementation of RSA 000
Comr	non uses of RS	А		

 RSA is considered very secure and has been widely used, such as in data transmission, digital signature and private key exchange.

Advantages and limitations

ロトメ母トメミトメミトーミーのへの

J. Pité and Y. Zhong

The RSA cryptosystem

Common uses of RSA

 RSA is considered very secure and has been widely used, such as in data transmission, digital signature and private key exchange.

Advantages and limitations

- **High security:** Provides strong security through the use of large keys and complex mathematical operations.
- Computational intensity: High computational demand because of the high-digit prime numbers, and the complex operations.

Security of RSA

Implementation of RSA 000

Considerations for quantum computing

Impact of quantum computing on RSA

J. Pité and Y. Zhong

The RSA cryptosystem

Security of RSA

Implementation of RSA 000

Considerations for quantum computing

Impact of quantum computing on RSA

 Quantum computing could produce more efficient algorithms that break RSA.

J. Pité and Y. Zhong

The RSA cryptosystem

Security of RSA

Implementation of RSA 000

Considerations for quantum computing

Impact of quantum computing on RSA

- Quantum computing could produce more efficient algorithms that break RSA.
- For example, Shor's algorithm is a quantum algorithm that solves integer factorization efficiently.

Security of RSA

Implementation of RSA 000

Considerations for quantum computing

Impact of quantum computing on RSA

- Quantum computing could produce more efficient algorithms that break RSA.
- For example, Shor's algorithm is a quantum algorithm that solves integer factorization efficiently.
- For now, we cannot build sufficiently sophisticated quantum computers that execute these complex algorithms.

	Mathematical preliminaries 000	Security of RSA 0000	Implementation of RSA 000

Implementation of RSA

Finding prime numbers

RSA demonstration

J. Pité and Y. Zhong

The RSA cryptosystem

MIT PRIMES Conference

イヨト・イヨト

Finding prime numbers for RSA

Selecting primes p and q

The security of RSA relies heavily on the choice of the two large prime numbers p and q. These primes should be:

J. Pité and Y. Zhong

The RSA cryptosystem

MIT PRIMES Conference

Finding prime numbers for RSA

Selecting primes p and q

The security of RSA relies heavily on the choice of the two large prime numbers p and q. These primes should be:

Large enough to avoid trivial factorization;

Finding prime numbers for RSA

Selecting primes p and q

The security of RSA relies heavily on the choice of the two large prime numbers p and q. These primes should be:

- Large enough to avoid trivial factorization;
- Randomly selected;

Finding prime numbers for RSA

Selecting primes p and q

The security of RSA relies heavily on the choice of the two large prime numbers p and q. These primes should be:

- Large enough to avoid trivial factorization;
- Randomly selected;
- Not too close to each other to prevent Fermat's factorization attack.

Finding prime numbers for RSA

Primality testing

Primality testing is crucial for verifying if a randomly generated number is prime.

・ロト・雪・・雪・・雪・ うらぐ.

J. Pité and Y. Zhong

Finding prime numbers for RSA

Primality testing

Primality testing is crucial for verifying if a randomly generated number is prime.

 Probabilistic tests, like Miller-Rabin test, provide a high degree of certainty.

• • = • • = •

Finding prime numbers for RSA

Primality testing

Primality testing is crucial for verifying if a randomly generated number is prime.

- Probabilistic tests, like Miller-Rabin test, provide a high degree of certainty.
- Deterministic tests, like AKS, are used for conclusive results but are less efficient.

• • = • • = •

Mathematical preliminaries 000	Security of RSA 0000	Implementation of RSA ○○●

RSA demonstration

Python implementation example

J. Pité and Y. Zhong

The RSA cryptosystem

MIT PRIMES Conference

A B + A B +